Deep embedded multi-view clustering with collaborative training

نویسندگان

چکیده

Multi-view clustering has attracted increasing attentions recently by utilizing information from multiple views. However, existing multi-view methods are either with high computation and space complexities, or lack of representation capability. To address these issues, we propose deep embedded collaborative training (DEMVC) in this paper. Firstly, the representations views learned individually autoencoders. Then, both consensus complementary taken into account a novel scheme is proposed. Concretely, feature cluster assignments all collaboratively. A new consistency strategy for centers initialization further developed to improve performance training. Experimental results on several popular datasets show that DEMVC achieves significant improvements over state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guided Co-training for Large-Scale Multi-View Spectral Clustering

In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clus...

متن کامل

A subspace co-training framework for multi-view clustering

0167-8655/$ see front matter 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.patrec.2013.12.003 q This paper has been recommended for acceptance by Jesús Ariel Carrasco Ochoa. ⇑ Corresponding author. Tel.: +358 41 4996553. E-mail addresses: [email protected], [email protected] (X. Zhao), [email protected] (N. Evans), [email protected] (J.-L. Dugelay). Xuran Zhao ⇑, Nichol...

متن کامل

A Co-training Approach for Multi-view Spectral Clustering

We propose a spectral clustering algorithm for the multi-view setting where we have access to multiple views of the data, each of which can be independently used for clustering. Our spectral clustering algorithm has a flavor of co-training, which is already a widely used idea in semi-supervised learning. We work on the assumption that the true underlying clustering would assign a point to the s...

متن کامل

Partial Multi-View Clustering

Real data are often with multiple modalities or coming from multiple channels, while multi-view clustering provides a natural formulation for generating clusters from such data. Previous studies assumed that each example appears in all views, or at least there is one view containing all examples. In real tasks, however, it is often the case that every view suffers from the missing of some data ...

متن کامل

Weighted Multi-view Clustering with Feature Selection

In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2021

ISSN: ['0020-0255', '1872-6291']

DOI: https://doi.org/10.1016/j.ins.2020.12.073